

Carbohydrate RESEARCH

Carbohydrate Research 341 (2006) 823-835

Syntheses of α -D-galactosamine neoglycolipids

Nicolas Laurent, Dominique Lafont and Paul Boullanger*

Laboratoire de Chimie Organique II-Glycochimie, Unité Mixte de Recherche UCBL-CNRS 5181, Université Lyon 1, Ecole Supérieure de Chimie Physique Electronique de Lyon, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France

> Received 28 December 2005; accepted 17 February 2006 Available online 3 March 2006

Abstract—Several N-acetyl- α -D-galactosamine neoglycolipids, as well as hydrophobized T and T_N antigen analogues, were prepared for embedment onto liposomes. Three different lipidic structures were used for the anchoring, that is cholesterol, 1,3-bis(undecyloxy)propan-2-ol and 1,3-bis(3,7,11,15-tetramethylhexadecyloxy)propan-2-ol. Oligoethyleneglycol spacers were used to link the carbohydrate and the hydrophobic moieties; their lengths were varied in order to obtain model compounds for the selective recognition by sialyl transferases involved in cancer processes. Glycosylation reactions were optimized to sluggish amphiphilic acceptor alcohols, in order to reach good 1,2-cis-stereoselectivities and acceptable yields. This aim was achieved by using 3,4,6-tri-O-acetyl-2-azido-2-deoxy-D-galactopyranosyl trichloroacetimidate as the donor, trimethylsilyl trifluoromethanesulfonate as the promoter and diethyl ether or mixtures of diethyl ether and dichloromethane as solvents. © 2006 Elsevier Ltd. All rights reserved.

Keywords: Neoglycolipids; N-Acetyl-α-D-galactosamine; Glycosylation; Hydrophobic anchor

1. Introduction

Mucins are transmembrane O-glycoproteins found in mucus. ^{1,2} The biosynthesis of epithelial mucins is initiated by the linkage of N-acetyl- α -D-galactosamine to serine or threonine (T_N antigens: α -D-GalNAc-Ser or

α-D-GalNAc-Thr). Further galactosylation at C-3 affords the *core 1* saccharidic structures (T antigens: β-D-Gal-(1 \rightarrow 3)-α-D-GalNAc-Ser (or Thr)). At this stage, the C-6 position of D-galactose can be glycosylated by means of a β-(1 \rightarrow 6)-D-GlcNAc transferase. After chain extension with poly-*N*-acetyllactosamine,

^{*}Corresponding author. Tel.: +33 4 72 43 11 62; e-mail: paul.boullanger@univ-lyon1.fr

the chain growth is ended by attachment of sialic acid, L-fucose or D-galactose. In tumour cells, the biosynthesis of complex glycans is inhibited by the underexpression of several glycosyltransferases and the overexpression of sialyl transferases. As a consequence, the high levels of short oligosaccharides (such as T_N and T antigens), acting as substrates for sialyl transferases, result in the accumulation of ST_N , α -2,3 ST or α -2,6 ST antigens. 1,3

Antitumour vaccines were prepared by covalent coupling of the synthetic aforementioned antigens to immunogenic proteins. ⁴⁻⁶ In the same perspective, the aim of this work was the preparation of N-acetyl- α -D-galactosamine neoglycolipids 1–4 and that of a T_N antigen analogue 5 suitable for embedment onto liposomes. The

resulting vesicles could constitute targets for the sialyl transferases involved in cancer processes.

For that purpose, we intended the synthesis of three families of neoglycolipids built on distinct lipid structures: 1,3-bis(undecyloxy)propan-2-ol (6), 1,3-bis(3,7, 11,15-tetramethylhexadecyloxy)propan-2-ol (7) and cholesterol. The oligoethyleneglycol spacer between the lipid and saccharide moieties was set to bring a favourable hydrophilic–hydrophobic balance on the molecule for a good embedment onto liposomes. The length of the latter was chosen with regard to our preceding results, 7 that is monoethyleneglycol for the less hydrophobic structure (8) and triethyleneglycol for the more hydrophobic ones (9 and 10).

2. Results and discussion

To our knowledge, there were no preparations of neoglycolipids of N-acetyl-D-galactosamine reported in the literature. However, several long chain aglycons (e.g., 9-hydroxynonanoic acid methyl ester) were glycosylated with 2-azido-2-deoxy-D-galactopyranosyl chlorides or bromides and various promoters favouring the α-stereoselectivity.8-10 The most challenging concern in such reactions is the selection of a donor/promoter system able to react with sluggish acceptors and to induce the formation of 1,2-cis-glycosides in high yields and with a high stereoselectivity. Latest advancements in the field have been reviewed recently. 11,12 In the p-galactosamine series, the 1.2-cis-stereoselectivity is usually obtained with a donor bearing a non-participating azido group at C-2 and an anomeric leaving group such as β-chloride, ^{13,14} α-bromide^{15,16} or β-imidate. ^{17–19} Other methods, starting from 2-acetamido-2-deoxy-α-p-galactopyranosyl imidate²⁰ or 2-nitro-p-galactal^{21,22} have also been reported recently.

1,3-Bis(undecyloxy)propan-2-ol (6) was prepared in a different way than that already reported.²³ Racemic 1,2-O-isopropylidene glycerol was reacted at the OH-free position with undecyl bromide, before hydrolysis of the acetal function in acidic conditions. The diol, thus obtained, was regioselectively alkylated at the primary position with undecyl bromide and dibutyltin oxide²⁴ to afford the expected derivative 6^{23} in 75% overall yield. This three-step synthesis is more time consuming than the reaction of undecyl alcohol with epichlorohydrin,²³ but it affords a much more better yield. Alcohol 6 was then converted to compound 8 (58%) by reaction with 2-tetrahydropyranyloxyethyl chloride in phase transfer conditions, followed by hydrolysis of the tetrahydropyranyl group in acidic medium. The amino compound 12 (70%) was obtained from alcohol 6, by reaction with bromoacetonitrile and sodium hydride, followed by reduction of the nitrile intermediate 11 by hydrogenation (10% Pd/C).

1,3-Bis(3,7,11,15-tetramethylhexadecyl)propan-2-ol (7) was prepared in 32% overall yield by reaction of phytol (3,7,11,15-tetramethyl-2-hexadecen-1-ol) with epichlorohydrin and sodium hydride in THF, followed by hydrogenation of the crude intermediate in the presence of platinum oxide. Reaction of 7 with tetrahydropyranyl triethyleneglycol monotosylate²⁵ and NaH in refluxing THF afforded the intermediate 13, further converted into alcohol 9 by removal of the tetrahydropyranyl group in mild acidic conditions.

Fmoc-L-serine 14²⁶ was reacted with the amino intermediate 12 in usual conditions (DCC, HOBt in DMF) to afford the *C*-lipidic aminoacid 15 in 59% yield.

For glycosylation reactions, 3,4,6-tri-O-acetyl-2-azido-2-deoxy-D-galactopyranosyl trichloroacetimidate²⁷ (1:4, α/β mixture) was used as the donor, diethyl ether or

mixtures of diethyl ether and dichloromethane were used as the solvent (diethyl ether is known to favour the formation of α -glycosides and dichloromethane was often necessary to enhance solubility at low temperature), catalytic amounts of trimethylsilyl trifluoromethanesulfonate were used as the promoter. Acceptor alcohol 8 was thus reacted with an excess of donor (1.5 equiv) to afford 16a (62%) as an inseparable 3:1 α/β -anomeric mixture. After reduction of the azido function (nickel chloride–sodium borohydride) and N-acetylation, pure α isomer 16b could be separated in 64% yield. Fully deprotected 1 was quantitatively obtained by Zemplén O-deacetylation of 16b.

Similarly, glycosylation of alcohol **9** afforded **17a** (4:1, α/β mixture, 91%) from which it was possible to separate a small amount of pure α -isomer for analytical purposes. When reduction of the azido function and N-acetylation, in the same conditions as above, was applied to **17a** (α/β mixture), compound **17b** was obtained as an α/β mixture (84%) from which the α anomer could be separated in 51% yield. Finally, **17b** was de-O-acetylated to afford the fully deprotected derivative **2**.

With the monocholesteryl triethyleneglycol acceptor 10, the results were very similar: the glycosylation led to 18a (4:1, α/β mixture, 89%), reduction and N-acetylation afforded 18b from which the pure α -isomer could be separated in 56% yield. O-Deacetylation gave quantitatively the expected neoglycolipid 3.

Glycosylation of lipopeptide 15 in similar conditions was less efficient. Compound 19a was obtained in 35% yield only, and the reaction required a stoichiometric amount of promoter (TMSOTf). Furthermore, the stereoselectivity in favour of the α isomer was lower (2:1). The reverse procedure reported by Schmidt and Toepfer²⁸ did not afford any improvement. Therefore, glycosylation of a protected serine, before condensation of the lipid moiety, was considered as another route to 19b. Thus, glycosylation of benzyl N-(9H-fluoren-9-vlmethoxycarbonyl)-L-serinate²⁴ with 3,4,6-tri-O-acetyl-2azido-2-deoxy-D-galactopyranosyl trichloroacetimidate afforded the known glycoside **20a**²⁹ (α-anomer, 72%). The azido function was then converted to acetamide as described previously (20b). The benzyl ester was removed by hydrogenolysis to afford 21b; then, reaction of the latter with the amine 12 in the presence of Nethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) afforded 19b in 43% yield. Compound 19b could also be obtained in 47% yield by reduction-acetylation of 19a. The Fmoc group was removed by treatment of 19b with morpholine to afford 22b (76%), which was fully O-deacetylated to 5 in Zemplén conditions.

In order to synthesize a neoglycolipid bearing the same disaccharidic determinant as T antigens, the azido derivative **18a** was O-deacetylated and reacted with benzaldehyde dimethyl acetal in the presence of *p*-toluenesulfonic acid to afford the 4,6-*O*-benzylidene derivative **18d**

(69%). Glycosylation of the latter with 2,3,4,6-tetra-*O*-acetyl-D-galactopyranosyl trichloroacetimidate³⁰ and a catalytic amount of trimethylsilyl trifluoromethanesulfonate in dichloromethane at -20 °C afforded the disaccharidic neoglycolipid **23** (71%). Removal of the benzylidene group (borontrifluoride etherate/ethanethiol) afforded compound **24**, which was then O-acetylated. After reduction of the azido function (hydrogenation, 10% Pd/C) and N-acetylation, compound **25** (70%) was quantitatively O-deacetylated in Zemplén conditions to afford the expected compound **4**.

As a conclusion, it can be mentioned that glycosylation reactions with highly hydrophobic acceptor alcohols do not result in yields and stereoselectivities as high as those reported in the literature. Nevertheless. five neoglycolipids (1–5) in which the hydrophilic moieties are building blocks of T and T_N antigens have been prepared by chemical synthesis in quite acceptable yields. They will be used as substrates of sialyl transferases, specific to the OH-6 position of N-acetyl-α-Dgalactosamine (ST6GalNAc transferases). The amphiphilic character of these neoglycolipids will allow them to be embedded onto liposomes or adsorbed on immunotitration plates, for enzymatic measurements. The roles of the hydrophobic anchors in the adsorption process and the shifts in specificities of the enzymes towards the different haptens at an interface are expected to give further insights into the biochemistry of some cancer cell surfaces.

3. Experimental

3.1. General methods

Pyridine was dried by refluxing with CaH₂ prior to distillation. Dichloromethane was washed twice with water, dried with CaCl₂ and distilled from CaH₂. Tetrahydrofuran was distilled from sodium-benzophenone. Acetonitrile was distilled from CaH2. Methanol was distilled from magnesium. Pyridine, THF and CH₂Cl₂ were stored over 4 Å molecular sieves; CH₃CN and MeOH over 3 Å molecular sieves. Melting points were determined on a Büchi apparatus and are uncorrected. Thin layer chromatography was performed on aluminium sheets coated with Silica Gel 60 F₂₅₄ (E. Merck). Compounds were visualized by spraying the TLC plates with dilute 15% aq H₂SO₄, followed by charring at 150 °C for a few minutes. Column chromatography was performed on Silicagel Geduran Si 60 (E. Merck). Optical rotations were recorded on a Perkin Elmer 241 polarimeter in a 1 dm cell at 21 °C. ¹H and ¹³C NMR spectra were recorded with a Bruker AC-200 spectrometer working at 200 and 50 MHz, respectively, with Me₄Si as internal standard. Elemental analyses were performed by the 'Laboratoire Central d'Analyses du CNRS' (Vernaison, France).

3.2. 2-*O*-[2-(2-Acetamido-2-deoxy-α-D-galactopyranosyloxy)ethyl]-1,3-bis(undecyloxy)propan-2-ol (1)

A soln of compound 16b (0.441 g, 0.57 mmol) in MeOH (28 mL) containing a chip of sodium was stirred overnight at rt. After neutralization with Amberlyst IR 120 (H⁺) and filtration, the solvent was evaporated under diminished pressure to afford 1 (0.367 g, 94%) as an amorphous solid; $[\alpha]_D$ +30.3 (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 6.63 (d, 1H, $J_{2,NH}$ 9.7 Hz, NH), 4.91 (d, 1H, J_{1,2} 3.7 Hz, H-1), 4.72 (s, 1H, OH), 4.62 (ddd, 1H, $J_{2,3}$ 11.4 Hz, H-2), 4.00 (dd, 1H, $J_{3,4}$ 2.7, $J_{4,5}$ 1.0 Hz, H-4), 3.87 (dd, 1H, H-3), 3.89-3.76 (m, 6H, H-6a, H-6b, OCH₂CH₂O), 3.68–3.62 (m, 2H, H-5, CH(CH₂O- $C_{11}H_{23}$)₂), 3.55–3.39 (m, 8H, $2CH_2OCH_2C_{10}H_{21}$), 2.96 (s, 1H, OH), 2.05 (s, 3H, CH₃CON), 1.60–1.48 (m, 4H, $2OCH_2CH_2C_9H_{19}$), 1.35–1.15 (m, 32H, 16C H_2 alkyl chains), 0.89 (t, 6H, J 6.5 Hz, 2C H_3 alkyl chains); ¹³C NMR (CDCl₃): δ 172.7 (CH₃CO), 97.9 (C-1), 78.2 $(CH(CH_2OC_{11}H_{23})_2),$ 71.7, 70.8 (CH(*C*H₂O*C*H₂- $C_{10}H_{21}$)₂), 70.4, 70.1, 69.5 (C-3, C-4, C-5), 69.0, 67.7 (OCH₂CH₂O), 62.4 (C-6), 50.6 (C-2), 31.9, 29.7, 29.6, 29.5, 29.4, 26.1, 22.7 (CH₂ alkyl chains), 23.1 (CH₃CON), 14.1 (CH₃ alkyl chains). Anal. Calcd for C₃₅H₆₉NO₉·0.5H₂O (656.95): C, 63.99; H, 10.74; N, 2.13. Found: C, 63.74; H, 10.69; N, 2.19.

3.3. 15,19,23,27-Tetramethyl-10-(3,7,11,15-tetramethyl-hexadecyloxymethyl)-3,6,9,12-tetraoxaoctacosyl 2-acetamido-2-deoxy-α-D-galactopyranoside (2)

Prepared from **17b** (0.369 g, 0.33 mmol), as described for **1**, to afford **2** (0.318 g, 97%) as a colourless oil; $[\alpha]_D$ +25.8 (c 1.0, CHCl₃); ¹³C NMR (CDCl₃): δ 172.8 (CH₃CO), 97.9 (C-1), 78.5 (CH(CH₂OPhy)₂), 70.9, 70.8, 70.6, 70.4, 70.0, 69.7, 67.3 ((OCH₂CH₂)₃, CH(CH₂OCH₂C₁₉H₃₉)₂), 71.0, 70.4, 69.6 (C-3, C-4, C-5), 62.6 (C-6), 50.8 (C-2), 39.4, 37.6, 37.5, 37.4, 37.3, 36.8, 36.7, 32.8, 30.0, 28.0, 25.3, 24.8, 24.5, 23.3, 22.8, 22.7, 19.8, 19.7, 19.7 (CH, CH₂, CH₃ phytyl chains, CH₃CON). Anal. Calcd for C₅₇H₁₁₃NO₁₁·0.5H₂O (997.49): C, 68.63; H, 11.52; N, 1.40. Found: C, 68.31; H, 11.10; N, 1.42.

3.4. 8-(Cholest-5-en-3β-yloxy)-3,6-dioxaoctyl 2-acetamido-2-deoxy-α-D-galactopyranoside (3)

Prepared from **18b** (0.705 g, 0.83 mmol), as described for **1**, to afford **3** (0.609 g, 98%) as a colourless oil; $[\alpha]_D$ +10.6 (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 6.79 (d, 1H, $J_{2,\rm NH}$ 7.7 Hz, NHAc), 5.36–5.34 (m, 1H, H-6_{chol}), 4.90 (d, 1H, $J_{1,2}$ 3.1 Hz, H-1), 4.31–4.27 (m, 1H, H-2), 4.04–4.02 (m, 1H, H-4), 3.87–3.83 (m, 4H, H-3, H-5, H-6a, H-6b), 3.67–3.63 (m, 12H, (OC H_2 -C H_2)₃), 3.20–3.18 (m, 1H, H-3_{chol}), 2.34–0.68 (m, 43H, cholesterol), 2.06 (s, 3H, C H_3 CON); ¹³C NMR (CDCl₃):

 δ 172.8 (CH₃CO), 140.8 (C-5_{chol}), 121.7 (C-6_{chol}), 97.9 (C-1), 79.6 (C-3_{chol}), 70.9, 70.5, 69.9, 67.2 ((OCH₂-CH₂)₃), 70.0, 69.9, 69.4 (C-3, C-4, C-5), 61.9 (C-6), 56.8 (C-14_{chol}), 56.2 (C-17_{chol}), 50.5 (C-9_{chol}), 50.2 (C-2), 42.4 (C-13_{chol}), 39.8 (C-12_{chol}), 39.5 (C-24_{chol}), 39.0 (C-4_{chol}), 37.2 (C-1_{chol}), 36.9 (C-10_{chol}), 36.2 (C-22_{chol}), 35.8 (C-20_{chol}), 32.0 (C-7_{chol}), 31.9 (C-8_{chol}), 28.4 (C-2_{chol}), 28.3 (C-16_{chol}), 28.0 (C-25_{chol}), 24.3 (C-15_{chol}), 23.9 (C-23_{chol}), 23.2 (C-27_{chol}), 22.8 (C-26_{chol}), 22.6 (CH₃CON), 21.1 (C-11_{chol}), 19.4 (C-19_{chol}), 18.8 (C-21_{chol}), 11.9 (C-18_{chol}). Anal. Calcd for C₄₁H₇₁NO₉· 1.5H₂O (749.01): C, 65.74; H, 9.89; N, 1.87. Found: C, 65.64; H, 9.79; N, 1.87.

3.5. 8-(Cholest-5-en-3β-yloxy)-3,6-dioxaoctyl 2-acetamido-2-deoxy-3-*O*-β-D-galactopyranosyl-α-D-galactopyranoside (4)

Prepared from 25 (0.273 g, 0.23 mmol), as described for 1, to afford 4 (0.199 g, 96%) as a white solid; mp 213-214 °C; $[\alpha]_D$ +24.2 (c 1.1, 3:1 CHCl₃-MeOH); ¹H NMR (CDCl₃): δ 5.17–5.15 (m, 1H, 6_{chol}), 4.65 (d, 1H, $J_{1,2}$ 3.7 Hz, H-1), 4.28 (dd, 1H, $J_{2,3}$ 10.7 Hz, H-2), 4.11 (d, 1H, $J_{1'2'}$ 7.3 Hz, H-1'), 4.08–4.06 (m, 1H, H-4), 3.97-3.95 (m, 1H, H-4'), 3.68-3.30 (m, 21H, H-3, H-5, H-6a, H-6b, H-2', H-3', H-5', H-6'a, H-6'b, $(OCH_2CH_2)_3$, 3.21–3.19 (m, 1H, H-3_{chol}), 2.30–0.65 (m, 43H, H cholesterol), 1.79 (s, 3H, CH_3CON); ^{13}C NMR (CDCl₃): δ 172.8 (CH₃CO), 140.5 (C-5_{chol}), 121.6 (C-6_{chol}), 105.0 (C-1'), 97.7 (C-1), 79.5 (C-3_{chol}), 78.4 (C-3), 74.9 (C-5'), 73.1 (C-3'), 70.9 (C-2', C-5), 70.6, 70.2, 70.1, 70.0, 67.0, 66.4 ((OCH₂CH₂)₃), 68.8, 68.6 (C-4, C-4'), 61.3 (C-6, C-6'), 56.6 (C-14_{chol}), 56.0 (C-17_{chol}), 50.1 (C-9_{chol}), 48.2 (C-2), 42.2 (C-13_{chol}), 39.6 (C-12_{chol}), 39.4 (C-24_{chol}), 38.8 (C-4_{chol}), 37.0 (C-1_{chol}), 36.7 (C-10_{chol}), 36.0 (C-22_{chol}), 35.6 (C-20_{chol}), 31.7 (C-7_{chol}), 31.7 (C-8_{chol}), 28.1 (C-2_{chol}), 28.0 (C-16_{chol}), 27.8 (C-25_{chol}), 24.1 (C-15_{chol}), 23.6 (C-23_{chol}), 22.5 (CH₃CON), 22.5 (C-27_{chol}), 22.3 (C-26_{chol}), 20.9 (C-11_{chol}), 19.1 (C-19_{chol}), 18.5 (C-21_{chol}), 11.6 (C-18_{chol}). Anal. Calcd for C₄₇H₈₁NO₁₄·H₂O (902.141): C, 62.57; H, 9.28; N, 1.55. Found: C, 62.67; H, 9.28; N, 1.43.

3.6. 4-Undecyloxymethyl-3,6-dioxaheptadecyl *O*-(2-acetamido-2-deoxy-α-D-galactopyranosyl)-L-serinamide (5)

Prepared from **22b** (0.034 g, 0.040 mmol), as described for **1**, to afford **5** (0.028 g, 95%) as a colourless oil; $[\alpha]_D$ +36.5 (c 1.0, CHCl₃); ¹³C NMR (1:1 CDCl₃–CD₃OD): δ 172.7 (CH₃CO), 170.8 (CONH_{Ser}), 98.5 (C-1), 78.1 (CH(CH₂OC₁₁H₂₃)₂), 71.7, 70.6, 69.2, 68.7, 68.9 (CH(CH₂OCH₂C₁₀H₂₁)₂, β-CH_{2Ser}, NHCH₂CH₂O, C-3, C-4, C-5), 60.8 (C-6), 55.4 (α-CH_{Ser}), 50.4 (C-2), 39.5 (NHCH₂CH₂O), 32.1, 29.9, 29.7, 29.6, 26.9, 22.8 (CH₂ alkyl chains), 22.8 (CH₃CON), 14.1 (CH₃ alkyl chains). MS FAB (M+H)⁺: calcd 734.5531; found, 734.5531.

3.7. 1,3-Bis(undecyloxy)propan-2-ol (6)

Racemic 1,2-O-isopropylidene glycerol (3.30 g, 25 mmol) was added to freshly prepared 50% aq NaOH (50 mL) and the mixture was stirred for 1 h at 80 °C. Undecyl bromide (15.0 mL) and Bu₄NBr (1.30 g, 4.0 mmol) were successively added and heating was maintained for 7 h. After cooling to rt, the mixture was poured into water (150 mL) and extracted with CH_2Cl_2 (3 × 50 mL). Then, the combined organic extracts were washed with water (2 × 25 mL), dried (Na₂SO₄) and concentrated. The crude product was dissolved in a mixture of EtOH (20 mL) and 2 N aq HCl (30 mL) and refluxed for 1 h. After evaporation of EtOH, the aq phase was neutralized with satd aq NaHCO₃ and extracted with CHCl₃. The organic extract was dried and concentrated before purification by column chromatography (3:1 EtOAc-petroleum ether) to afford pure 1-O-undecyl glycerol (5.31 g, 86%). A mixture of the latter (2.74 g, 11.12 mmol) and dibutyltin oxide (3.33 g, 13.38 mmol) was refluxed in dry toluene for 5 h; water was removed by azeotropic distillation. The solvent was removed under diminished pressure and the residue was carefully dried. The product was dissolved in DMF (90 mL), undecyl bromide (3.45 mL, 15.40 mmol) and CsF (4.56 g, 30.00 mmol) were added and the mixture was stirred for 24 h at rt. Then, EtOAc (60 mL) and water (1.5 mL) were added and the mixture was stirred for 1 h, before filtration and concentration. The residue was redissolved in CH_2Cl_2 (100 mL), washed with water (2 × 25 mL) and concentrated before purification by column chromatography (1:8 EtOAc-petroleum ether) to afford product **6** (3.87 g, 87%) as a solid; mp 35 °C (lit.²³ mp 38 °C); ¹H NMR (CDCl₃): δ 4.02–3.91 (m, 1H, CHOH), 3.55– 3.40 (m, 8H, $2CH_2OCH_2C_{10}H_{21}$), 2.59 (d, 1H, J 3.9 Hz, OH), 1.64-1.50 (m, 4H, $2OCH_2CH_2C_9H_{19}$), 1.40-1.20 (m, 32H, 16CH₂ alkyl chains), 0.87 (t, 6H, J 6.7 Hz, 2CH₃ alkyl chains); 13 C NMR (CDCl₃): δ 71.9, 71.7 (CH($CH_2OCH_2C_{10}H_{21}$)₂), 69.5 (CHOH), 31.9, 29.7, 29.5, 29.4, 26.1, 22.7 (CH₂ alkyl chains), 14.1 (CH₃ alkyl chains).

3.8. 1,3-Bis(3,7,11,15-tetramethylhexadecyloxy)propan-**2-ol** (7)

A soln of phytol (20.0 mL, 57.32 mmol) in THF (32 mL) was added dropwise (80 min) at rt to a mixture of 60% NaH in oil (5.00 g, 125 mmol), THF (40 mL) and HMPA (3.2 mL). The mixture was refluxed for 1 h, then cooled to 0 °C, before dropwise addition of epichlorohydrin (2.2 mL, 27.8 mmol) in THF (16 mL) for 40 min. The mixture was refluxed for 16 h, then cooled to rt and poured into satd aq NH₄Cl and extracted with EtOAc (3×75 mL). The organic phase was dried (Na₂SO₄) and concentrated under diminished pressure.

After filtration on a short column of silica-gel (1:10 EtOAc-petroleum ether), the product was dissolved in EtOAc (50 mL) and the soln was hydrogenated (4 atm) in the presence of PtO₂ (0.400 g) for 6 h at rt. After filtration on Celite, and concentration under diminished pressure, the residue was purified by column chromatography (1:1 EtOAc-petroleum ether) to afford the expected compound 7 (5.85 g, 32%) as an oily material; $R_{\rm f}$ 0.53; ¹H NMR (CDCl₃): δ 3.98–3.90 (m, 1H, HOCH), 3.53-3.39 (m, 8H, 4OCH₂), 2.46 (d, 1H, J 4.1 Hz, OH), 1.56-1.08 (m, 48H, 20CH₂, 8CH phytyl chains), 0.89-0.84 (m, 30H, $10CH_3$ phytyl chains); ^{13}C NMR (CDCl₃): δ 72.0, 70.0 (CH(CH₂OCH₂C₁₉H₃₉)₂), 69.5 (CHOH), 39.4, 37.4, 37.3, 36.7, 36.6, 32.8, 29.9, 28.0, 25.4, 24.9, 24.5, 24.4, 22.8, 22.7, 19.8, 19.7 (CH₂, CH, CH₃ phytyl chains). Anal. Calcd for C₄₃H₈₈O₃ (653.16): C, 79.07; H, 13.58. Found: C, 79.31; H, 13.65.

3.9. 2-*O*-(2-Hydroxyethyl)-1,3-bis(undecyloxy)propan-2-ol (8)

Freshly prepared 50% ag NaOH (4 mL) was added dropwise with stirring to a soln of alcohol 6 (1.00 g, 2.50 mmol), 2-(2-chloroethoxy)tetrahydro-2*H*-pyran (1.10 mL, 7.50 mmol) and Bu₄NHSO₄ (0.085 g, 0.25 mmol) in CH₂Cl₂ (4 mL). The mixture was stirred at 65 °C for 5 days. After dilution with CH₂Cl₂ (40 mL), the organic extract was washed with water (3 × 10 mL), dried and concentrated under diminished pressure, before purification by column chromatography (1:6 EtOAc-petroleum ether, 0.5% NEt₃) to afford the expected tetrahydropyranyl derivative. The latter was dissolved in a 1:1 MeOH-CH₂Cl₂ mixture (20 mL) and treated during 2 h with 12 N aq HCl (0.2 mL). After neutralization with NaHCO₃ (0.730 g), the mixture was evaporated to dryness before addition of EtOAc. After filtration and concentration, the residue was purified by column chromatography (1:3 EtOAc-petroleum ether) to afford 8 (0.645 g, 58%) as an oily material; $R_{\rm f}$ 0.58; ¹H NMR (CDCl₃): δ 3.82–3.70 (m, 5H, CHOH, $OCH_2CH_2OH)$, 3.58–3.44 (m, 8H, $2CH_2OCH_2C_{10}H_{21}$), 1.64-1.50 (m, 4H, $2OCH_2CH_2C_9H_{19}$), 1.38-1.18 (m, 32H, 16CH₂ alkyl chains), 0.87 (t, 6H, J 6.7 Hz, 2CH₃ alkyl chains); 13 C NMR (CDCl₃): δ 78.6 (OCH), 72.3 (OCH_2CH_2OH) , 71.8, 71.3 $(CH(CH_2OCH_2C_{10}H_{21})_2)$, 62.1 (OCH₂CH₂OH), 31.9, 29.6, 29.5, 29.4, 26.1, 22.7 (CH₂ alkyl chains), 14.1 (CH₃ alkyl chains). Anal. Calcd for C₂₇H₅₆O₄ (444.73): C, 72.92; H, 12.69. Found: C, 72.85; H, 12.87.

3.10. 15,19,23,27—Tetramethyl-10-(3,7,11,15-tetramethylhexadecyloxymethyl)-3,6,9,12-tetraoxaoctacosan-1-ol (9)

Product 13 (0.800 g, 0.920 mmol) was dissolved in 0.3:10:10 12 N aq HCl-MeOH-CH₂Cl₂ (9 mL) and the

soln was stirred at rt for 45 min. Then, NaHCO₃ (0.300 g, 3.57 mmol) was added to the mixture, before addition of EtOAc (50 mL). The organic extract was washed with water, dried (MgSO₄), concentrated and purified by column chromatography (1:2 EtOAc-petroleum ether) to afford product 9 (0.588 g, 81%) as a colourless oil; R_f 0.43; ¹H NMR (CDCl₃): δ 3.80–3.73 (m, 1H, CH(CH₂OPhy)₂), 3.70-3.59 (m, 12H, (CH₂- CH_2O_{3}), 3.51–3.44 (m, 8H, $2CH_2OCH_2C_{19}H_{39}$), 1.56– 1.08 (m, 48H, 20CH₂, 8CH phytyl chains), 0.89-0.85 (m, 30H, $10CH_3$ phytyl chains); ^{13}C NMR (CDCl₃): δ 78.4 (CH(CH₂OPhy)₂), 72.7, 70.9, 70.6, 70.4, 70.0, 69.7 (CH(CH₂OCH₂C₁₉H₃₉)₂, (CH₂CH₂O)₂, OCH₂CH₂OH), 61.7 (CH₂OH), 39.4, 37.5, 37.4, 37.3, 36.7, 36.6, 32.8, 29.9, 28.0, 24.8, 24.5, 24.4, 24.1, 22.7, 22.6, 19.8, 19.7 (CH₂, CH, CH₃ phytyl chains). Anal. Calcd for $C_{49}H_{100}O_6$ (785.31): C, 74.94; H, 12.83. Found: C, 74.93; H, 13.09.

3.11. 4-Undecyloxymethyl-3,6-dioxaheptanenitrile (11)

Sodium hydride (600 mg, 15 mmol, 60% in oil) was slowly added under Ar to a soln of the alcohol 6 (1.20 g, 3.00 mmol) in CH₃CN (7 mL). After stirring for 2 h, the mixture was cooled to -20 °C and bromoacetonitrile (1.56 mL, 24.00 mmol) was added slowly. Stirring was maintained overnight at -20 °C, then the reaction mixture was allowed to reach rt and concentrated. After addition of CH₂Cl₂ (50 mL), the salts were removed by centrifugation and filtration. After evaporation of the solvent and purification by column chromatography (1:6 EtOAc-petroleum ether), compound 11 $(1.015 \,\mathrm{g}, 77\%)$ was obtained as a colourless oil; R_{f} 0.75; ¹H NMR (CDCl₃): δ 4.50 (s, 2H, OC H_2 CN), 3.92-3.82 (m, 1H, OCH), 3.55 (d, 4H, J 4.8 Hz, $2CH_2OC_{11}H_{23}$), 3.44 (t, 4H, J 6.6 Hz, $2OCH_2C_{10}H_{21}$), 1.65-1.50 (m, 4H, $2OCH_2CH_2C_9H_{19}$), 1.37-1.17 (m, 32H, 16CH₂ alkyl chains), 0.88 (t, 6H, J 6.3 Hz, 2CH₃ alkyl chains); 13 C NMR (CDCl₃): δ 116.7 (CN), 78.8 (OCH), 71.8, 71.2 $(CH(CH_2OCH_2C_{10}H_{21})_2)$, 56.1 (CH₂CN), 31.9, 29.7, 29.6, 29.5, 29.4, 26.1, 22.7 (CH₂ alkyl chains), 14.1 (CH₃ alkyl chains). Anal. Calcd for C₂₇H₅₃NO₃ (439.40): C, 73.75; H, 12.15; N, 3.19. Found: C, 73.72; H, 12.08; N, 3.22.

3.12. 2-*O*-(2-Aminoethyl)-1,3-bis(undecyloxy)propan-2-ol (12)

A mixture of compound 11 (0.900 g, 2.05 mmol) in EtOH (25 mL) and 12 N aq HCl (1 mL) containing 10% Pd/C (108 mg) was stirred under hydrogen (10 atm) for 4 h before neutralization with NEt₃ (15 mL). After filtration and evaporation, petroleum ether was added to the mixture. Triethylammonium chloride was filtered off and the organic phase was washed with water (2 × 5 mL), dried (Na₂SO₄) and con-

centrated to dryness. After purification by column chromatography (10:1 CHCl₃–MeOH), product **12** (0.758 g, 83%) was obtained as a colourless oil; $R_{\rm f}$ 0.50; ¹H NMR (CDCl₃): δ 3.65–3.60 (m, 3H, OCH, OCH₂CH₂NH₂), 3.51–3.40 (m, 8H, 2CH₂OCH₂C₁₀H₂₁), 2.85 (t, 2H, J 4.9 Hz, CH₂NH₂), 1.70 (s, 2H, NH₂), 1.65–1.50 (m, 4H, 2OCH₂CH₂C₉H₁₉), 1.43–1.23 (m, 32H, 16CH₂ alkyl chains), 0.88 (t, 6H, J 6.4 Hz, 2CH₃ alkyl chains); ¹³C NMR (CDCl₃): δ 78.1 (OCH), 72.4 (OCH₂CH₂NH₂), 71.6, 70.8 (CH(CH₂OCH₂C₁₀H₂₁)₂), 42.1 (OCH₂CH₂-NH₂), 31.9, 29.6, 29.5, 29.3, 26.1, 22.7 (CH₂ alkyl chains), 14.1 (CH₃ alkyl chains). Anal. Calcd for C₂₇H₅₇NO₃ (443.75): C, 73.08; H, 12.95; N, 3.16. Found: C, 72.74; H, 12.93; N, 3.14.

3.13. 15,19,23,27-Tetramethyl-10-(3,7,11,15-tetramethyl-hexadecyloxymethyl)-1-tetrahydropyranyloxy-3,6,9,12-tetraoxaoctacosane (13)

A mixture of alcohol 7 (1.30 g, 0.200 mmol) and NaH (60% in oil, 0.400 g, 10 mmol, washed with pentane) in THF was refluxed for 2 h and then cooled to rt. A soln of 1-tetrahydropyranyloxy-8-tosyloxy-3,6-dioxaoctane²⁵ (3.90 g, 10 mmol) in THF (70 mL) was added dropwise over 2 h and the mixture was refluxed for 22 h. After cooling to rt and addition of water (50 mL), THF was removed under diminished pressure and the mixture was extracted with CH_2Cl_2 (3 × 30 mL). The organic layer was washed with water, dried (Na₂SO₄), concentrated and purified by column chromatography (1:5 EtOAc-petroleum ether) to afford product 13 (1.06 g, 60%) as an amorphous solid; R_f 0.52; ¹H NMR (CDCl₃): δ 4.64–4.62 (m, 1H, CH THP), 3.92–3.84 (m, 1H, CH(CH₂OPhy)₂), 3.82–3.74 (m, 2H, OCH₂ THP), 3.71-3.61 (m, 12H, $(CH_2CH_2O)_3$), 3.54-3.42 (m, 8H, $2CH_2OCH_2C_{19}H_{39}$), 1.71–1.08 (m, 54H, 3C H_2 THP, 20CH₂, 8CH phytyl chains), 0.89–0.85 (m, 30H, $10CH_3$ phytyl chains); 13 C NMR (CDCl₃): δ 98.9 (CH THP), 78.5 (CH(CH₂OPhy)₂), 78.5, 70.9, 70.8, 70.6, 70.0, 69.8, 69.4, 67.3, 66.7, 62.2 (CH(CH₂OCH₂- $C_{19}H_{39}$)₂, $(CH_2CH_2O)_3$, CH_2O THP), 39.4, 37.5, 37.4, 37.3, 36.8, 36.7, 32.8, 30.6, 29.9, 28.0, 25.5, 24.8, 24.5, 24.4, 24.0, 22.8, 22.7, 19.8, 19.7 (CH₂ THP, CH₂, CH, CH₃ phytyl chains). Anal. Calcd for C₅₄H₁₀₈O₇ (869.43): C, 74.60; H, 12.52. Found: C, 74.63; H, 12.66.

3.14. 4-Undecyloxymethyl-3,6-dioxaheptadecyl *N*-[(9*H*-fluoren-9-ylmethoxy)carbonyl]-L-serinamide (15)

A mixture of amine **12** (0.406 g, 0.910 mmol), *N*-(9*H*-fluoren-9-ylmethoxycarbonyl)-L-serine²⁴ **14** (0.310 g, 0.940 mmol) and 1-hydroxybenzotriazole (0.141 g, 1.04 mmol) in dry DMF (4 mL) was cooled to 0 °C. A soln of dicyclohexylcarbodiimide (0.203 g, 0.980 mmol) in DMF (5 mL) was added dropwise and the mixture was stirred

for 10 min at 0 °C, then allowed to reach rt and stirred for 6 h. After dilution with CH₂Cl₂ and filtration on Celite, the organic extract was washed with 0.1 N HCl, then with satd aq NaHCO₃ and water. After drying (Na₂SO₄) and concentration, the crude product was purified by column chromatography (2:1 EtOAc–petroleum ether) to afford 15 (0.404 g, 59%) as an amorphous solid; $[\alpha]_D$ +2.4 (c 1.0, CHCl₃); R_f 0.60; ¹³C NMR (1:1 CDCl₃-CD₃OD): δ 170.8 (CONH), 156.4 (NHCOO_{Fmoc}), 143.3, 140.8 (aromatic C_{Fmoc}), 127.1, 126.5, 124.5, 119.3 (aromatic CH_{Fmoc}), 77.5 (OCH(CH₂OC₁₁H₂₃)₂), 71.1, 69.9, 68.0, 66.6 (CH(CH₂OCH₂C₁₀H₂₁)₂, OCH₂-CH₂NH, CH_{2Fmoc}), 61.8 (β - CH_{2Ser}), 56.5 (α - CH_{Ser}), 46.6 (C-9_{Emoc}), 39.2 (OCH₂CH₂NH), 33.1, 31.4, 29.0, 28.9, 28.8, 25.5, 25.0, 24.4, 22.1 (CH₂ alkyl chains), 13.2 (CH₃ alkyl chains). Anal. Calcd for C₄₅H₇₂N₂O₇ (753.06): C, 71.77; H, 9.64; N, 3.72. Found: C, 71.50; H, 9.55; N, 3.86.

3.15. 2-*O*-[2-(3,4,6-Tri-*O*-acetyl-2-azido-2-deoxy-D-galactopyranosyloxy)ethyl]-1,3-bis(undecyloxy)propan-2-ol (16a)

Trimethylsilyltrifluoromethane sulfonate (64 µL, 0.331 mmol) in Et₂O (0.5 mL) was added dropwise (30 min) to a cooled $(-30 \,^{\circ}\text{C})$ soln of **8** $(0.650 \,\text{g}, 1.46 \,\text{mmol})$ and 3,4,6-tri-O-acetyl-2-azido-2-deoxy-D-galactopyranosyl trichloroacetimidate (1:4 α/β -anomeric mixture, 1.037 g, 2.18 mmol) in 3:1 Et₂O-CH₂Cl₂ (15 mL), containing crushed activated 4 Å molecular sieves. After 2 h at -30 °C, the mixture was allowed to reach rt and stirring was maintained for 18 h. The mixture was then neutralized by addition of NEt₃ (100 µL), diluted with CH₂Cl₂ (50 mL), washed with satd aq NaHCO₃ $(2 \times 10 \text{ mL})$, dried (Na_2SO_4) and concentrated under diminished pressure. After purification by column chromatography (1:3 EtOAc-petroleum), compound 16a (0.686 g, 62%) was obtained as a 3:1 α/β -anomeric mixture. A small amount of the α anomer was isolated in a pure form as a colourless oil; $[\alpha]_D$ +83.4 (c 1.0, CHCl₃); $R_{\rm f}$ 0.58; ¹H NMR (CDCl₃): δ 5.45–5.44 (m, 1H, H-4), 5.39 (dd, 1H, $J_{2,3}$ 10.9 Hz, $J_{3,4}$ 3.2 Hz, H-3), 5.11 (d, 1H, $J_{1,2}$ 3.4 Hz, H-1), 4.31 (br t, 1H, $J_{5,6a}$, $J_{5,6b}$ 6.7 Hz, H-5), 4.13 (dd, 1H, $J_{6a,6b}$ 11.1 Hz, H-6a), 4.06 (dd, 1H, H-6b), 3.88-3.77 (m, 4H, OCH₂CH₂O), 3.75-3.72 (m, 1H, CH(CH₂OC₁₁H₂₃)₂), 3.62 (dd, 1H, H-2), 3.51–3.40 (m, 8H, $2CH_2OCH_2C_{10}H_{21}$), 2.14, 2.05, 2.04 (3s, 9H, 3CH₃CO), 1.64–1.50 (m, 4H, 2OCH₂CH₂C₉H₁₉), 1.35– 1.18 (m, 32H, 16C H_2 alkyl chains), 0.88 (t, 6H, J 6.3 Hz, 2CH₃ alkyl chains); ¹³C NMR (CDCl₃): δ 170.2, 170.0, 169.7 (3CH₃CO), 98.1 (C-1), 78.5 $(CH(CH_2OC_{11}H_{23})_2),$ 71.6, 70.9 (CH(CH₂OCH₂- $C_{10}H_{21})_2$, 69.3, 67.8 (OCH₂CH₂O), 70.9, 68.1, 67.8 (C-3, C-4, C-5), 61.5 (C-6), 57.4 (C-2), 31.9, 29.6, 29.5, 29.3, 26.1, 22.7 (CH₂ alkyl chains), 20.7, 20.6 (CH₃COO), 14.1 (CH₃ alkyl chains). Anal. Calcd for

C₃₉H₇₁N₃O₁₁ (757.99): C, 61.80; H, 9.44; N, 5.54. Found: C, 61.78; H, 9.46; N, 5.57.

3.16. 2-*O*-[2-(2-Acetamido-3,4,6-tri-*O*-acetyl-2-deoxy-αp-galactopyranosyloxy)ethyl]-1,3-bis(undecyloxy)propan-2-ol (16b)

A soln of NaBH₄ in EtOH (0.300 mol/L) was added dropwise to a stirred soln of NiCl₂·6H₂O (2.371 g, 10.00 mmol), B(OH)₃ (0.927 g, 15.00 mmol) and azidoglycoside 16a (0.758 g, 1.00 mmol) in EtOH (50 mL), until persistency of the dark colour. After 1.5 h, the mixture was concentrated under diminished pressure and the residue was dissolved in a 3:1 pyr-Ac₂O mixture (10 mL). After stirring for 18 h at rt, the mixture was concentrated under diminished pressure before addition of CH₂Cl₂, washing with 3% aq KHSO₄ (10 mL), then water (10 mL). After drying (Na₂SO₄) and concentration, the residue was purified by column chromatography (2:1 EtOAc-petroleum ether) to afford the α -product **16b** (0.495 g, 64%) as an amorphous solid; $[\alpha]_D$ +44.7 (c 1.0, CHCl₃); R_f 0.50; ¹H NMR (CDCl₃): δ 6.13 (d, 1H, $J_{2,NH}$ 9.7 Hz, NH), 5.38 (dd, 1H, $J_{3,4}$ 3.4 Hz, $J_{4,5}$ 1.0 Hz, H-4), 5.16 (dd, 1H, $J_{3,4}$ 11.2 Hz, H-3), 4.89 (d, 1H, $J_{1,2}$ 3.6 Hz, H-1), 4.62 (ddd, 1H, H-2), 4.25 (br t, 1H, $J_{5,6a}$, $J_{5,6b}$ 6.5 Hz, H-5), 4.15–4.05 (m, 2H, H-6a, H-6b), 3.88–3.73 (m, 4H, OCH₂CH₂O), 3.70-3.61 (m, 1H, $CH(CH_2OC_{11}H_{23})_2$), 3.50-3.40 (m, 8H, 2CH₂OCH₂C₁₀H₂₁), 2.16, 2.05, 1.98, 1.96 (4s, 12H, 3CH₃COO, 1CH₃CON), 1.62–1.47 (m, 4H, 2OCH₂CH₂C₉H₁₉), 1.40-1.15 (m, 32H, 16CH₂ alkyl chains), 0.88 (t, 6H, J 6.3 Hz, 2C H_3 alkyl chains); ¹³C NMR (CDCl₃): δ 170.7, 170.4, 170.2 (4CH₃CO), 98.1 (C-1), 78.3 (CH(CH₂OC₁₁H₂₃)₂), 71.7, 70.8 (CH(CH₂O-CH₂C₁₀H₂₁)₂), 69.8, 68.1 (OCH₂CH₂O), 68.7, 67.4, 66.8 (C-3, C-4, C-5), 61.9 (C-6), 47.5 (C-2), 31.9, 29.6, 29.5, 29.3, 26.1, 22.7 (CH₂ alkyl chains), 23.1 (CH₃CON), 20.7, 20.6 (3CH₃COO), 14.1 (CH₃ alkyl chains). Anal. Calcd for $C_{41}H_{75}NO_{12}$ (774.03): C, 63.62; H, 9.77; N; 1.81. Found: C, 63.11; H, 9.82; N, 1.94.

3.17. 15,19,23,27-Tetramethyl-10-(3,7,11,15-tetramethyl-hexadecyloxymethyl)-3,6,9,12-tetraoxaoctacosyl 3,4,6-tri-*O*-acetyl-2-azido-2-deoxy-D-galactopyranoside (17a)

Trimethylsilyl trifluoromethanesulfonate (12 μL, 0.062 mmol) was added to a cooled (-30 °C) mixture of alcohol 9 (0.660 g, 0.840 mmol) and 3,4,6-tri-O-acetyl-2-azido-2-deoxy-D-galactopyranosyl trichloroacetimidate (1:5 α/β-anomeric mixture, 0.520 g, 1.09 mmol) in dry Et₂O (7 mL). The mixture was then allowed to reach rt and after 40 min, it was neutralized by addition of i-Pr₂NEt (15 μL). After evaporation, the residue was dissolved in CH₂Cl₂ (50 mL), washed with 0.1 N aq HCl (3×5 mL), then water (2×5 mL), dried (MgSO₄) and concentrated under diminished pressure. After

purification by column chromatography (1:2 EtOAc– petroleum ether), compound 17a (4:1 α,β-anomeric mixture, 0.840 g, 91%) was obtained as a colourless oil. A small amount (0.200 g) of pure α-isomer was recovered as an amorphous solid, after a second chromatography; $[\alpha]_D$ +53.0 (c 1.0, CHCl₃); R_f 0.76 (0.70 for β -isomer); ¹H NMR (CDCl₃): δ 5.46 (dd, 1H, $J_{3,4}$ 3.3 Hz, $J_{4,5}$ 1.0 Hz, H-4), 5.39 (dd, 1H, J_{2.3} 10.9 Hz, H-3), 5.09 (d, 1H, $J_{1,2}$ 3.5 Hz, H-1), 4.30 (br dd, 1H, $J_{5,6a}$ 6.5 Hz, $J_{5.6b}$ 7.0 Hz, H-5), 4.14 (dd, 1H, $J_{6a.6b}$ 11.0 Hz H-6a), 4.06 (dd, 1H, H-6b), 3.88-3.39 (m, 22H, H-2, OCH- $(CH_2OPhy)_2$, $(OCH_2CH_2)_3$, $2CH_2OCH_2C_{19}H_{39}$), 2.15, 2.06, 2.05 (3s, 9H, 3CH₃COO), 1.60–1.08 (m, 48H, 20CH₂, 8CH alkyl chains), 0.89–0.85 (m, 30H, 10CH₃ phytyl chains); 13 C NMR (CDCl₃): δ 170.3, 170.0, 169.8 (3CH₃CO), 98.3 (C-1), 78.4 (CH(CH₂OPhy)₂), 70.9, 70.8, 70.7, 70.6, 70.1, 69.9, 69.7, 67.8 ((OCH₂- CH_2 ₃, $CH(CH_2OCH_2C_{19}H_{39})_2$), 68.2, 67.6, 66.6 (C-3, C-4, C-5), 61.6 (C-6), 57.4 (C-2), 39.4, 37.5, 37.4, 37.3, 36.8, 36.7, 32.8, 29.9, 28.0, 25.3, 24.8, 24.5, 24.4, 22.8, 22.7, 19.8, 19.7 (CH, CH₂, CH₃ phytyl chains), 20.7, 20.6 (3CH₃COO). Anal. Calcd for C₆₁H₁₁₅N₃O₁₃ (1098.58): C, 66.69; H, 10.55; N, 3.82. Found: C, 67.04; H, 10.66; N, 4.02.

3.18. 15,19,23,27-Tetramethyl-10-(3,7,11,15-tetramethyl-hexadecyloxymethyl)-3,6,9,12-tetraoxaoctacosyl 2-acetamido-3,4,6-tri-*O*-acetyl-2-deoxy-α-D-galactopyranoside (17b)

Prepared as described for **16b** from the α/β -anomeric mixture 17a (0.840 g, 0.765 mmol). Purification by column chromatography with EtOAc afforded 17b as a α/β -anomeric mixture (0.715 g, 84%). This mixture was chromatographed again (2:1 petroleum ether-acetone) to afford the pure α -anomer (0.435 g, 51%) as a colourless oil; $[\alpha]_D$ +29.1 (c 1.0, CHCl₃); R_f 0.42; ¹H NMR (CDCl₃): δ 6.25 (d, 1H, $J_{2,NH}$ 7.7 Hz, NHAc), 5.39 (dd, 1H, $J_{3.4}$ 3.1 Hz, $J_{4.5}$ 1.0 Hz, H-4), 5.19 (dd, 1H, $J_{3,2}$ 11.3 Hz, H-3), 4.90 (d, 1H, $J_{1,2}$ 3.6 Hz, H-1), 4.61 (ddd, 1H, H-2), 4.24 (br dd, 1H, J_{5,6a} 6.0 Hz, J_{5,6b} 7.1 Hz, H-5), 4.14 (dd, 1H, J_{6a,6b} 11.0 Hz H-6a), 4.06 (dd, 1H, H-6b), 3.85–3.43 (m, 21H, OCH(CH₂OPhy)₂, $(OCH_2CH_2)_3$, $2CH_2OCH_2C_{19}H_{39}$, 2.17, 2.05, 1.99, 1.97 (4s, 12H, 3CH₃COO, CH₃CON), 1.63-1.08 (m, 48H, 20CH₂, 8CH phytyl chains), 0.89–0.85 (m, 30H, $10CH_3$ phytyl chains); ^{13}C NMR (CDCl₃): δ 170.8, 170.4, 170.3, 170.2 (4CH₃CO), 98.3 (C-1), 78.5 (CH(CH₂OPhy)₂), 70.9, 70.8, 70.7, 69.9, 69.7, 67.8 $((OCH_2CH_2)_3, CH(CH_2OCH_2C_{19}H_{39})_2), 68.6, 67.5,$ 66.8 (C-3, C-4, C-5), 61.9 (C-6), 47.6 (C-2), 39.4, 37.5, 37.4, 37.3, 36.8, 36.7, 32.8, 30.0, 28.0, 24.8, 24.5, 24.4, 24.0, 22.8, 22.6, 19.8, 19.7 (CH, CH₂, CH₃ phytyl chains), 23.2 (CH₃CON), 20.8, 20.7 (3CH₃COO). Anal. Calcd for C₆₃H₁₁₉NO₁₄ (1114.62): C, 67.89; H, 10.76; N, 1.26. Found: C, 67.32; H, 10.70; N, 1.33.

3.19. 8-(Cholest-5-en-3β-yloxy)-3,6-dioxaoctyl 3,4,6-tri-*O*-acetyl-2-azido-2-deoxy-D-galactopyranoside (18a)

Trimethylsilyl trifluoromethanesulfonate (18 µL, 0.093 mmol) was added to a cooled (-30 °C) mixture of 8-(cholest-5-en-3β-vloxy)-3,6-dioxa-1-octanol 10^7 (1.32 g, 2.52 mmol) and 3,4,6-tri-O-acetyl-2-azido-2-deoxy-Dgalactopyranosyl trichloroacetimidate (1:5 α/β-anomeric mixture, 0.930 g, 1.95 mmol), in dry Et₂O (18 mL). The mixture was allowed to reach rt and, after 30 min, it was neutralized by addition of i-Pr₂NEt (100 µL). After evaporation of the solvent, the residue was dissolved in CH₂Cl₂ (50 mL) and the soln was washed with 0.1 N ag HCl $(3 \times 5 \text{ mL})$, then water (2×5 mL), dried (MgSO₄) and concentrated under diminished pressure, before purification by column chromatography (2:3 EtOAc–petroleum ether), to afford 18a (1.45 g, 89%) as an inseparable 4:1 α/β -anomeric mixture; R_f 0.46; ¹H NMR (CDCl₃): selected values δ 5.10 (d, 0.8H, $J_{1.2}$ 3.5 Hz, H-1 α), 4.77 (dd, 0.2H, $J_{2.3}$ 10.9 Hz, $J_{3,4}$ 3.2 Hz, H-3 β), 4.50 (d, 0.2H, $J_{1,2}$ 8.0 Hz, H-1 β); ¹³C NMR (CDCl₃): δ 170.4, 170.1, 169.9 (3CH₃CO), 141.0 (C-5_{chol}), 121.6 (C-6_{chol}), 102.5 (C-1 β), 98.3 (C-1 α), 79.5 (C-3_{chol}).

3.20. 8-(Cholest-5-en-3 β -yloxy)-3,6-dioxaoctyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranoside (18b)

Prepared as described for **16b** from the α/β -anomeric mixture 18a (1.45 g, 1.74 mmol). Purification by column chromatography (2:1 petroleum ether-acetone) afforded an unseparated 1:1 α/β -mixture (0.269 g, 18%) and the pure α -derivative **18b** (0.808 g, 56%) as a colourless oil; $[\alpha]_D$ +13.0 (c 1.0, CHCl₃); R_f 0.57; ¹H NMR (CDCl₃): δ 6.18 (d, 1H, $J_{2.NH}$ 9.8 Hz, NHAc), 5.39–5.35 (m, 2H, H-4, H-6_{chol}), 5.19 (dd, 1H, $J_{2,3}$ 11.3 Hz, $J_{3,4}$ 3.1 Hz, H-3), 4.90 (d, 1H, $J_{1,2}$ 3.4 Hz, H-1), 4.61 (ddd, 1H, H-2), 4.24–4.20 (m, 1H, H-5), 4.13–4.07 (m, 2H, H-6a, H-6b), 3.86-3.63 (m, 12H, $(OCH_2CH_2)_3$), 3.18 (m, 1H, H-3_{chol}), 2.17, 2.05, 1.99, 1.98 (4s, 12H, 3CH₃COO, $1CH_3CON$), 2.39–0.67 (m, 43H, H cholesterol); ^{13}C NMR (CDCl₃): δ 170.8, 170.4, 170.2 (4CH₃CO), 140.9 (C-5_{chol}), 121.6 (C-6_{chol}), 98.1 (C-1), 79.6 (C-3_{chol}), 70.9, 70.6, 69.9, 67.5, 67.3 ((OCH₂CH₂)₃), 68.6, 67.4, 66.8 (C-3, C-4, C-5), 61.9 (C-6), 56.8 (C-14_{chol}), 56.2 (C-17_{chol}), 50.2 (C-9_{chol}), 47.6 (C-2), 42.3 (C-13_{chol}), 39.8 (C-12_{chol}), 39.5 (C-24_{chol}), 39.1 (C-4_{chol}), 37.2 $(C\text{-}1_{chol}),\ 36.9\ (C\text{-}10_{chol}),\ 36.2\ (C\text{-}22_{chol}),\ 35.8\ (C\text{-}20_{chol}),$ 31.9 (C-7_{chol}), 30.9 (C-8_{chol}), 28.3 (C-2_{chol}), 28.2 (C-16_{chol}), 28.0 (C-25_{chol}), 24.3 (C-15_{chol}), 23.8 (C-23_{chol}), 23.3 (C-27_{chol}), 22.8 (C-26_{chol}), 22.6 (CH₃CON), 21.1 (C-11_{chol}), 20.8, 20.7 (3*C*H₃COO), 19.4 (C-19_{chol}), 18.7 (C-21_{chol}), 11.9 (C-18_{chol}). Anal. Calcd for C₄₇H₇₇NO₁₂ (848.11): C, 66.56; H, 9.15; N, 1.65. Found: C, 65.91; H, 9.32; N, 1.72.

3.21. 8-(Cholest-5-en-3β-yloxy)-3,6-dioxaoctyl 2-azido-4,6-*O*-benzylidene-2-deoxy-α-D-galactopyranoside (18d)

The α/β -anomeric mixture **18b** (0.705 g, 0.847 mmol) obtained from 18a was quantitatively O-deacetylated with catalytic MeONa in MeOH (20 mL). After neutralization with Amberlyst IR 120 (H⁺) and evaporation, the crude product was treated for 4 h at 40 °C with benzaldehyde dimethyl acetal (250 µL, 1.46 mmol) in MeCN (4.1 mL) in the presence of p-TsOH (0.005 g). After neutralization with satd aq NaHCO₃ (0.5 mL), concentration and coevaporation from toluene, the residue was directly purified by column chromatography (1:4 EtOAc-petroleum ether) to afford the pure α-anomer **18d** (0.488 g, 69%) as an oily material; $[\alpha]_D$ +53.2 (c 1.0, CHCl₃); R_f 0.57; ¹H NMR (CDCl₃): δ 7.49–7.38 (m, 5H, C_6H_5), 5.59 (s, 1H, CHPh), 5.39–5.35 (m, 1H, H-6_{chol}), 5.06 (d, 1H, $J_{1.2}$ 3.4 Hz, H-1), 4.33–4.29 (m, 1H, H-4), 4.28 (dd, 1H, $J_{5,6a}$ 1.3 Hz, $J_{6a,6b}$ 12.5 Hz, H-6a), 4.25–4.21 (m, 1H, H-3), 4.10 (dd, 1H, $J_{5.6b}$ 1.9 Hz, H-6b), 3.88-3.62 (m, 13H, H-5, $(OCH_2CH_2)_3$), 3.59 (dd, 1H, $J_{2,3}$ 10.3 Hz, H-2), 3.19 (m, 1H, H-3_{chol}), 2.41–0.67 (m, 43H, H cholesterol); ¹³C NMR (CDCl₃): δ 141.0 (C-5_{chol}), 137.5, 129.3, 128.4, 126.3 (C_6H_5), 121.6 (C-6_{chol}), 101.3 (CHC₆H₅), 98.8 (C-1), 79.6 (C-3_{chol}), 75.62 (C-4), 71.0, 70.8, 70.7, 70.2, 67.7, 67.4 ((OCH₂CH₂)₃), 69.4 (C-6), 67.5 (C-3), 62.8 (C-5), 60.8 (C-2), 56.8 (C-14_{chol}), 56.2 (C-17_{chol}), 50.2 (C-9_{chol}), 42.4 (C-13_{chol}), 39.8 (C-12_{chol}), 39.6 (C-24_{chol}), 39.2 (C-4_{chol}), 37.2 (C-1_{chol}), 36.9 (C-10_{chol}), 36.2 (C-22_{chol}), 35.8 (C-20_{chol}), 32.0 (C-7_{chol}), 31.9 (C-8_{chol}), 28.4 (C-2_{chol}), 28.3 (C-16_{chol}), 28.0 (C-25_{chol}), 24.3 (C-15_{chol}), 23.9 (C-23_{chol}), 22.9 (C-27_{chol}), 22.6 (C-26_{chol}), 21.1 (C-11_{chol}), 19.4 (C-19_{chol}), 18.8 (C-21_{chol}), 11.9 (C-18_{chol}). Anal. Calcd for C₄₆H₇₁N₃O₈·H₂O (812.06): C, 68.03; H, 9.06; N, 5.17. Found: C, 67.69; H, 8.82; N, 5.36.

3.22. 4-Undecyloxymethyl-3,6-dioxaheptadecyl *O*-(3,4,6-tri-*O*-acetyl-2-azido-2-deoxy-D-galactopyranosyl)-*N*-[(9*H*-fluoren-9-vlmethoxy)carbonyl]-L-serinamide (19a)

A mixture of the serine derivative **15** (0.376 g, 0.499 mmol), 3,4,6-tri-O-acetyl-2-azido-2-deoxy-D-galactopyranosyl trichloroacetimidate (0.356 g, 0.749 mmol) and activated 4 Å molecular sieves in 2:1 Et₂O–CH₂Cl₂ (6.5 mL) was cooled to -18 °C. A soln of TMSOTf (30 μ L, 0.155 mmol) in Et₂O (0.1 mL) was added slowly and stirring was continued for 2 h at -18 °C, then 18 h at rt. After neutralization with NEt₃ (30 μ L), filtration, concentration and purification by column chromatography (200:1 CHCl₃–MeOH) product **19a** (0.177 g, 35%) was obtained as an unseparable 2:1 α/β -anomeric mixture. A fraction containing the α -derivative only, together with some trichloroacetamide, was separated for NMR. ¹H NMR (CDCl₃): δ 7.72 (d, 2H, J 7.5 Hz, aromatic $H_{\rm Fmoc}$), 7.62 (d, 2H, J 7.3 Hz, aromatic

 $H_{\rm Fmoc}$), 7.41 (t, 2H, J 7.3 Hz, aromatic $H_{\rm Fmoc}$), 7.33 (t, 2H, J 7.5 Hz, aromatic H_{Fmoc}), 7.08–7.04 (m, 1H, NHCO), 5.86 (br d, 1H, NHCOO_{Fmoc}), 5.43 (br d, 1H, $J_{3,4}$ 3.0 Hz, H-4), 5.31 (dd, 1H, $J_{2,3}$ 10.3, H-3), 5.07 (d, 1H, H-1), 4.40–3.40 (m, 23H, H-2, H-5, H-6a, H-6b, H-9_{Fmoc}, α -C H_{Ser} , β -C H_{2Ser} CH(CH₂OC₁₁H₂₃)₂, $2CH_2OCH_2C_{10}H_{21}$, CH_{2Fmoc} , OCH_2CH_2N), 2.15, 2.06, 2.01 (3s, 9H, $3CH_3COO$), 1.62–1.50 (m, 4H, $2OCH_2CH_2$), 1.36–1.16 (m, 32H, 16C H_2 alkyl chains), 0.88 (t, 6H, 2CH₃ alkyl chains); ¹³C NMR (CDCl₃): δ 170.4, 170.0, 169.7, 168.9 (3CH₃COO, 1CH₂CON), 156.0 (NHCOO_{Fmoc}), 143.8, 141.3 (aromatic C_{Fmoc}), 127.8, 127.1, 125.1, 120.0 (aromatic CH_{Fmoc}), 98.5 (C-1), 78.4 (OCH(CH₂OC₁₁H₂₃)₂), 71.7, 70.9, 68.9, 68.3, 67.3 (CH(CH₂OCH₂C₁₀H₂₁)₂, OCH₂CH₂NH, β-CH_{2Ser}, CH_{2Fmoc}) 68.4, 67.4, 67.1 (C-3, C-4, C-5), 61.6 (C-6), 57.7 (C-2), 54.5 (α -CH_{Ser}), 47.1 (C-9_{Fmoc}), 40.0 (OCH₂CH₂NH), 30.0, 29.9, 29.7, 29.6, 26.4, 22.7 (CH₂ alkyl chains), 21.0, 20.9, 20.7 (3CH₃COO), 14.1 (CH₃ alkyl chains).

3.23. 4-Undecyloxymethyl-3,6-dioxaheptadecyl O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranosyl)-N-[(9H-fluoren-9-ylmethoxy)carbonyl]-L-serinamide (19b)

3.23.1. Method a. Compound 19b was prepared from **19a** (0.177 g, 0.166 mmol), as described above for **16b** from 16a. After purification by column chromatography (3:1 EtOAc-petroleum ether), **19b** (0.085 g, 47%) was obtained as an amorphous solid; $[\alpha]_D$ +41.4 (c 1.0, CHCl₃); $R_{\rm f}$ 0.30; ¹H NMR (CDCl₃): δ 7.77 (d, 2H, J7.5 Hz, aromatic $H_{\rm Fmoc}$), 7.62 (d, 2H, J 7.3 Hz, aromatic $H_{\rm Fmoc}$), 7.41 (t, 2H, J 7.3 Hz, aromatic $H_{\rm Fmoc}$), 7.33 (t, 2H, J 7.5 Hz, aromatic $H_{\rm Fmoc}$), 7.18 (t, 1H, J 5.4 Hz, CONH), 6.24 (d, 1H, J_{NH.2} 9.6 Hz, NHCOCH₃), 6.00 (d, 1H, J 7.4 Hz, NHCOO_{Fmoc}), 5.36 (br d, 1H, $J_{3.4}$ 3.3, $J_{4,5} < 1$ Hz, H-4), 5.10 (dd, 1H, $J_{2,3}$ 11.0 Hz, H-3), 4.83 (d, 1H, $J_{1,2}$ 3.5 Hz, H-1), 4.58 (ddd, 1H, H-2), 4.41 (m, 3H, α -C H_{Ser} , NHCH₂C H_2 O), 4.23 (t, 1H, J 6.9 Hz, H-9_{Fmoc}), 4.13 (br t, 1H, J_{5,6a}, J_{5,6b} 6.6 Hz, H-5), 4.08 (dd, 1H, $J_{6a,6b}$ 11.0 Hz, H-6a), 4.02 (dd, 1H, H-6b), 3.95 (dd, 1H, J 3.5 Hz, J 10.1 Hz, β -C H_{Ser}), 3.78 (dd, 1H, β -C H_{Ser}), 3.72–3.66 (m, 2H, C H_{2Fmoc}), 3.64 (quint, 1H, J 5.4 Hz, $CH(CH_2OC_{11}H_{23})$), 3.55– 3.49 (m, 2H, NHCH2CH2O), 3.43 (m, 8H, 2CH2O- $CH_2C_{10}H_{21}$), 2.15, 2.04, 2.02, 1.96 (4s, 12H, 3C H_3COO , $1CH_3CON$), 1.62-1.48 (m, 4H, $2OCH_2CH_2C_9H_{19}$), 1.34–1.18 (m, 32H, 16C H_2 alkyl chains), 0.87 (t, 6H, J 6.9 Hz, 2CH₃ alkyl chains); ¹³C NMR (CDCl₃): δ 171.1, 170.8, 170.7, 169.4 (4CH₃CO, CH₂CON), 156.3 $(NHCOO_{Fmoc})$, 144.1, 141.7 (aromatic C_{Fmoc}), 128.2, 127.5, 125.4, 120.5 (aromatic CH_{Fmoc}), 99.5 (C-1), 78.8 $(CH(CH_2OC_{11}H_{23})_2)$, 72.2, 71.3 $(CH(CH_2OCH_2C_{10})_2)$ H_{21})₂), 69.9 (β - CH_{2Ser}), 69.1 (CH_{2Fmoc} , C-3), 67.7, 67.6 (C-4, C-5) 67.6 (NHCH₂CH₂O), 62.2 (C-6), 55.0 (α -CH_{Ser}), 47.8 (C-2, C-9_{Fmoc}), 40.1 (NHCH₂CH₂O), 32.3, 30.0, 29.9, 29.7, 29.6, 26.4, 23.1 (CH₂ alkyl chains), 23.5 (CH₃CON), 21.1, 21.0 (3CH₃COO), 14.5 (CH₃ alkyl chains). Anal. Calcd for C₅₉H₉₁N₃O₁₅ (1082.37): C, 65.47; H, 8.47; N, 3.88. Found: C, 65.19; H, 8.50; N, 3.82.

3.23.2. Method b. A soln of **20b** (0.106 g, 0.142 mmol) in EtOAc (8 mL) was stirred for 18 h under hydrogen (4 atm) in the presence of 10% Pd/C (58 mg). After filtration and concentration, the intermediate **21b** thus obtained, was used directly in the next step. A soln of EEDQ (0.023 g, 0.093 mmol) in CH₂Cl₂ (1 mL) was added at 0 °C to a soln of **21b** (0.056 g, 0.085 mmol) and **12** (0.045 g, 0.101 mmol) in CH₂Cl₂ (5 mL). Stirring was maintained for 2 h at 0 °C and then for 18 h at rt. The mixture was diluted with CH₂Cl₂, washed with 5% aq NaCl, dried (MgSO₄), concentrated and purified by column chromatography (3:1 EtOAc–petroleum ether) to afford product **19b** (0.040 g, 43%) as an amorphous solid.

3.24. Benzyl O-(3,4,6-tri-O-acetyl-2-azido-2-deoxy- α -D-galactopyranosyl)-N-[(9H-fluoren-9-ylmethoxy)-carbonyl]-L-serinate (20a)

mixture of 3,4,6-tri-O-acetyl-2-azido-2-deoxy-Dgalactopyranosyl trichloroacetimidate (0.254 g, 0.530 mmol), benzyl N-[(9H-fluoren-9-ylmethoxy)carbonyl]-L-serinate²⁶ (0.492 g, 1.18 mmol) and crushed activated 4 Å molecular sieves (0.800 g) in 1:1 Et₂O-CH₂Cl₂ (12 mL) was stirred under Ar and cooled to -30 °C. A soln of TMSOTf (38 uL. 0.197 mmol) in CH₂Cl₂ (0.1 mL) was added dropwise through a syringe and the mixture was stirred for 30 min at -30 °C. After addition of i-Pr₂NEt (75 µL), the mixture was allowed to reach rt. After dilution with CH₂Cl₂ (50 mL), filtration over Celite, washing three times with 0.1 N aq HCl $(3 \times 5 \text{ mL})$, then with water (5 mL), the organic phase was dried (Na₂SO₄) and concentrated under diminished pressure. After purification by column chromatography (2:3 EtOAc-petroleum ether), product **20a** (0.281 g, 72%) was obtained as an amorphous solid; $[\alpha]_D$ +84 (c 1.0, CHCl₃) [lit.²⁹ [α]_D +86.5 (c 1.0, CHCl₃)]; ¹H NMR (CDCl₃): selected values: δ 7.72 and 7.63 (2d, 4H, J 7.5 Hz, aromatic H_{Fmoc}), 7.45–7.30 (m, 9H, 4 aromatic $H_{\rm Fmoc}$, 5 aromatic $H_{\rm Bn}$), 6.02 (d, 1H, J 8.1 Hz, NHCOO_{Fmoc}), 5.41-5.39 (m, 1H, H-4), 5.27 (s, 2H, CH_2Ph), 4.88 (d, 1H, $J_{1,2}$ 3.2 Hz, H-1), 3.60 (dd, 1H, J_{2.3} 11.1 Hz, H-2), 2.16, 2.08, 1.97 (3s, 9H, 3CH₃COO); ¹³C NMR (CDCl₃): δ 170.5, 170.0, 169.8 (3CH₃CO), 163.6 (COOBn), 156.0 (NHCOO_{Fmoc}), 143.8, 141.3 (aromatic C_{Fmoc}), 135.0 (aromatic C_{Bn}), 128.7, 128.6, 127.8, 127.2, 125.2, 120.1 (aromatic CH_{Fmoc}, CH_{Bn}), 99.4 (C-1), 70.0, 67.9, 67.4 (CH_{2Fmoc}, CH₂Ph, β-CH_{2Ser}), 68.0, 67.6, 67.3 (C-3, C-4, C-5), 61.8 (C-6), 57.5 (C-2), 54.6 (α-CH_{Ser}), 47.1 (C-9_{Fmoc}), 20.7, 20.6 (3CH₃COO).

3.25. Benzyl *O*-(2-acetamido-3,4,6-tri-*O*-acetyl-2-deoxy-α-D-galactopyranosyl)-*N*-[(9*H*-fluoren-9-ylmethoxy)-carbonyl]-L-serinate (20b)

Prepared from 20a (0.146 g, 0.20 mmol) as described above for 16b. After purification by column chromatography (5:1 EtOAc-petroleum ether), 20b (0.106 g, 71%) was obtained as an amorphous solid; $[\alpha]_D$ +47.5 $(c 1.0, CHCl_3)$ [lit.²⁹ [α]_D +60.0 $(c 1.0, CHCl_3)$]; $R_f 0.50$; ¹H NMR (CDCl₃): selected values: δ 7.65 (d, 2H, J 7.5 Hz, aromatic $H_{\rm Fmoc}$), 7.61 (d, 2H, J 6.8 Hz, aromatic $H_{\rm Fmoc}$), 7.51–7.30 (m, 9H, 4 aromatic $H_{\rm Fmoc}$, 5 aromatic $H_{\rm Bn}$), 6.01 (d, 1H, $J_{\rm NH.2}$ 8.4 Hz, NHCOCH₃), 5.80 (d, 1H, J 9.0 Hz, NHCOO_{Fmoc}), 5.33 (dd, 1H, J_{3,4} 2.3, J_{4,5} <1 Hz, H-4), 5.20 (s, 2H, C H_2 Ph), 5.07 (dd, 1H, $J_{2,3}$ 11.4 Hz, H-3), 4.78 (d, 1H, $J_{1,2}$ 3.2 Hz, H-1); ¹³C NMR (CDCl₃): δ 170.9, 170.4, 170.3, 170.3, 170.0 (4CH₃CO, COOBn), 155.9 (NHCOO_{Fmoc}), 143.7, 141.4 (aromatic C_{Fmoc}), 135.0 (aromatic C_{Bn}), 128.9, 128.4, 127.9, 127.2, 125.0, 120.1 (aromatic CH_{Fmoc}), 99.1 (C-1), 69.8, 67.7, 67.3 (CH_{2Fmoc}, CH₂Ph, β-CH_{2Ser}), 68.2, 67.3, 67.2 $(C-3, C-4, C-5), 62.0 (C-6), 54.6 (\alpha-CH_{Ser}), 47.6, 47.1$ (C-2, C-9_{Fmoc}), 23.2 (*C*H₃CON), 20.7, 20.6 (3*C*H₃COO).

3.26. 4-Undecyloxymethyl-3,6-dioxaheptadecyl *O*-(2-acetamido-3,4,6-tri-*O*-acetyl-2-deoxy-α-D-galactopyranosyl)-L-serinamide (22b)

Compound 19b (0.060 g, 0.055 mmol) was reacted for 45 min with freshly distilled morpholine (0.8 mL). After evaporation and coevaporation from Et₂O, the residue was diluted with CH₂Cl₂ and the organic layer was washed with brine, before drying (Na₂SO₄). After concentration under diminished pressure and purification by column chromatography (20:1 CHCl₃-MeOH), product 22b (0.036 g, 76%) was recovered as an amorphous solid; $[\alpha]_D$ +47.6 (c 1.0, CHCl₃); R_f 0.35; ¹H NMR (CDCl₃): δ 7.75–7.71 (m, 1H, NHCO), 6.35 (d, 1H, $J_{NH,2}$ 9.6 Hz, NH), 5.37 (dd, 1H, $J_{3,4}$ 2.5, $J_{4,5}$ <1 Hz, H-4), 5.09 (dd, 1H, J_{2,3} 11.3 Hz, H-3), 4.88 (d, 1H, $J_{1,2}$ 3.5 Hz, H-1), 4.61 (ddd, 1H, H-2), 4.25–4.20 (m, 1H, α -C H_{Ser}), 4.15–4.08 (m, 2H, OC H_2 C H_2 N), 3.93–3.40 (m, 16H, H-5, H-6a, H-6b, β -C H_{2Ser} , $NHCH_2CH_2O$, $CH(CH_2OC_{11}H_{23})_2$, $2CH_2OCH_2$ - $C_{10}H_{21}$), 2.16, 2.06, 2.05, 1.98 (4s, 12H, 3C H_3 COO, CH_3CON), 1.84 (2s, 2H, NH_2), 1.60–1.48 (m, 4H, $2OCH_2CH_2C_9H_{19}$, 1.35–1.18 (m, 32H, 16CH₂ alkyl chains), 0.88 (t, 6H, J 6.0 Hz, 2C H_3 alkyl chains); ¹³C NMR (CDCl₃): δ 170.8, 170.5, 170.4 (4CH₃CO, NHCO-Ser), 98.9 (C-1), 78.2 (CH(CH₂OC₁₁H₂₃)₂), 71.9, 71.8, 70.9, 68.9 $(CH(CH_2OCH_2C_{10}H_{21})_2$, $NHCH_2CH_2O$, β-CH_{2Ser}), 68.6, 67.3, 67.2 (C-3, C-4, C-5), 61.6 (C-6), 55.0 (α-CH_{Ser}), 47.7 (C-2), 39.4 (NHCH₂CH₂O), 32.3, 30.0, 29.9, 29.7, 29.6, 26.4, 22.7 (CH₂ alkyl chains), 23.1 (CH₃CON), 20.8 (3CH₃COO), 14.1 (CH₃ alkyl chains).

3.27. 8-(Cholest-5-en-3β-yloxy)-3,6-dioxaoctyl 3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-2-azido-4,6-*O*-benzylidene-2-deoxy-α-D-galactopyranoside (23)

A suspension of glycoside 18d (0.396 g, 0.500 mmol) and 2,3,4,6-tetra-*O*-acetyl-α-D-galactopyranosyl trichloroacetimidate³⁰ (0.542 g, 1.10 mmol) in CH₂Cl₂ (8.0 mL) was stirred for 1 h at rt in the presence of crushed activated 4 Å molecular sieves (0.370 g). After cooling to -25 °C, TMSOTf (23 μL, 0.119 mmol) was added; stirring was maintained for 0.5 h at $-25 ^{\circ}\text{C}$ and the mixture was then allowed to reach rt. After 1 h stirring at rt, the mixture was neutralized by addition of i-Pr2NEt (25 µL), filtrated, concentrated and purified by two successive column chromatographies (1:1 EtOAc-petroleum ether, then 2:1 EtOAc-petroleum ether) to afford compound 23 (0.356 g, 71%) as a colourless oil; $[\alpha]_D$ +50.3 (c 1.0, CHCl₃); R_f 0.38 (2:1 EtOAc-petroleum ether); ¹H NMR (CDCl₃): δ 7.56–7.35 (m, 5H, C₆ H_5), 5.57 (s, 1H, CHPh), 5.43 (br d, 1H, $J_{3',4'}$ 3.5, $J_{4',5'}$ 1.3 Hz, H-4'), 5.37–5.35 (m, 1H, H-6_{chol}), 5.31 (dd, 1H, $J_{1'2'}$ 7.9, $J_{2'3'}$ 10.4 Hz, H-2'), 5.11 (d, 1H, $J_{1.2}$ 3.5 Hz, H-1), 5.05 (dd, 1H, H-3'), 4.81 (d, 1H, H-1'), 4.39 (dd, 1H, J_{3,4} 3.1, J_{4,5} 0.5 Hz, H-4), 4.27 (dd, 1H, $J_{5,6a}$ 1.6 Hz, $J_{6a,6b}$ 12.3 Hz, H-6a), 4.22 (dd, 1H, $J_{5',6'a}$ 6.7 Hz, $J_{6'a,6'b}$ 10.9 Hz, H-6'a), 4.18 (dd, 1H, $J_{2,3}$ 10.8 Hz, H-3), 4.17 (dd, 1H, $J_{5'.6'b}$ 6.7 Hz, H-6'b), 4.07 (dd, 1H, $J_{5.6b}$ 1.6 Hz, H-6b), 3.97 (ddd, 1H, H-5'), 3.89 (ddd, 1H, 1/2 CH₂OC-1), 3.85 (m, 1H, H-5), 3.84 (dd, 1H, H-2), 3.78 (ddd, 1H, 1/2 CH₂OC-1), 3.76-3.68 (m, 10H, 5OC H_2), 3.23–3.19 (m, 1H, H-3_{chol}), 2.17, 2.07, 2.06, 1.99 (4s, 12H, 4CH₃COO), 2.41-0.67 (m, 43H, H cholesterol); 13 C NMR (CDCl₃): δ 170.3, 170.2, 170.0, 169.4 (4CH₃CO), 140.8 (C-5_{chol}), 137.8, 128.8, 128.1, 126.2 (C₆H₅), 121.6 (C-6_{chol}), 102.4 (C-1'), 100.6 (CHC₆H₅), 98.9 (C-1), 79.5 (C-3_{chol}), 76.2 (C-3, C-4), 71.5 (C-3'), 71.2 (C-5'), 71.4, 71.1, 71.0, 70.7 (OCH₂), 69.4 (C-6), 68.0 (CH₂OC-1), 67.7 (CH₂O-Chol), 69.1 (C-2'), 67.4 (C-4'), 63.5 (C-5) 61.8 (C-6'), 59.30 (C-2), 56.8 (C-14_{chol}), 56.1 (C-17_{chol}), 50.2 (C-9_{chol}), 42.4 (C-13_{chol}), 39.8 (C-12_{chol}), 39.1 (C-24_{chol}), 39.1 (C-4_{chol}), 37.2 (C-1_{chol}), 36.9 (C-10_{chol}), 36.2 (C-22_{chol}), 35.8 (C-20_{chol}), 32.0 (C-7_{chol}), 31.9 (C-8_{chol}), 28.4 (C-2_{chol}), 28.3 (C-16_{chol}), 28.0 (C-25_{chol}), 24.3 (C-15_{chol}), 23.9 (C-23_{chol}), 22.9 (C-27_{chol}), 22.6 (C-26_{chol}), 21.1 (C-11_{chol}), 20.7, 20.5 (4CH₃COO), 19.4 (C-19_{chol}), 18.7 (C-21_{chol}), 11.9 (C-18_{chol}). Anal. Calcd for C₆₀H₈₉N₃O₁₇·1.5H₂O (1151.354): C, 62.58; H, 8.05; N, 3.64. Found: C, 62.42; H, 7.72; N, 3.30.

3.28. 8-(Cholest-5-en-3β-yloxy)-3,6-dioxaoctyl 3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-2-azido-2-deoxy-α-D-galactopyranoside (24)

Ethanethiol (0.72 mL, 3.63 mmol) and borontrifluoride etherate (17 µL, 0.134 mmol) were successively added

at 0 °C to a soln of disaccharide 23 (0.400 g, 0.356 mmol) in dry CH₂Cl₂ (5.6 mL). The mixture was stirred for 3 h at 0 °C and neutralized by addition of satd aq NaHCO₃ (0.1 mL). The organic phase was dried (Na₂SO₄) and concentrated. The residue was then purified by column chromatography (EtOAc) to afford diol **24** (0.274 g, 74%) as a colourless oil; $[\alpha]_D$ +33.8 (c 1.0, CHCl₃); R_f 0.37 (5:1 EtOAc–petroleum ether); ¹H NMR (CDCl₃): δ 5.41 (br d, 1H, $J_{3',4'}$ 3.2, $J_{4',5'}$ 0.6 Hz, H-4'), 5.35–5.33 (m, 1H, H-6_{chol}), 5.30 (dd, 1H, $J_{1',2'}$ 7.8, $J_{2',3'}$ 10.4 Hz, H-2'), 5.04 (dd, 1H, H-3'), 5.02 (d, 1H, $J_{1,2}$ 3.2 Hz, H-1), 4.74 (d, 1H, H-1'), 4.18–3.64 (m, 21H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-5', H-6'a, H-6'b, $(OCH_2CH_2)_3$, 3.20–3.18 (m, 1H, H-3_{chol}), 2.17, 2.09, 2.07, 2.00 (4s, 12H, 4CH₃COO), 2.41–0.67 (m, 43H, H cholesterol); 13 C NMR (CDCl₃): δ 170.4, 170.1, 170.0, 169.60 (4CH₃CO), 140.8 (C-5_{chol}), 121.6 (C-6_{chol}), 101.9 (C-1'), 98.9 (C-1), 79.5 (C-3_{chol}), 78.5 (C-3), 71.2, 70.7 (C-3', C-5'), 70.8, 70.7, 70.4, 67.4, 67.2 ((OCH₂CH₂)₃), 69.7, 68.9, 68.5 (C-4, C-5, C-2'), 67.0 (C-4'), 62.2 (C-6), 61.5 (C-6'), 58.7 (C-2), 56.8 (C-14_{chol}), 56.2 (C-17_{chol}), 50.2 (C-9_{chol}), 42.3 (C-13_{chol}), 39.8 (C-12_{chol}), 39.5 (C-24_{chol}), 39.0 (C-4_{chol}), 37.2 (C-1_{chol}), 36.9 (C-10_{chol}), 36.2 (C-22_{chol}), 35.8 (C-20_{chol}), 31.9 (C-7_{chol}), 31.9 (C-8_{chol}), 28.3 (C-2_{chol}), 28.2 (C-16_{chol}), 28.0 (C-25_{chol}), 24.3 (C-15_{chol}), 23.8 (C-23_{chol}), 22.8 (C-27_{chol}), 22.6 (C-26_{chol}), 21.1 (C-11_{chol}), 20.6, 20.5 (4CH₃COO), 19.4 (C-19_{chol}), 18.7 (C-21_{chol}), 11.9 $(C-18_{chol})$. Anal. Calcd for $C_{53}H_{85}N_3O_{17}\cdot 1.5H_2O$ (1063.255): C, 59.87; H, 8.34; N, 3.96. Found: C, 59.92; H, 8.23; N, 3.76.

3.29. 8-(Cholest-5-en-3β-yloxy)-3,6-dioxaoctyl 2-acetamido-4,6-di-*O*-acetyl-3-*O*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)-2-deoxy-α-D-galactopyranoside (25)

Compound 24 (0.390 g, 0.376 mmol) was acetylated overnight in 2:1 pyridine-Ac₂O (10 mL), concentrated under diminished pressure and coevaporated from toluene $(2 \times 20 \text{ mL})$. After dissolution in absolute EtOH (25 mL), NiCl₂·6H₂O (0.896 g, 3.76 mmol) and B(OH)₃ (0.349 g, 5.64 mmol) were added, before dropwise addition of a soln of NaBH₄ (0.218 g, 5.76 mmol) in EtOH (25 mL), until persistency of a dark colour. After 4 h at rt, the mixture was concentrated under diminished pressure and the residue was treated overnight in a 2:1 pyridine-Ac₂O mixture (10 mL). After evaporation and coevaporation three times from toluene $(3 \times 20 \text{ mL})$, the crude product was dissolved in CH₂Cl₂ (60 mL), the organic phase was washed with 3% aq KHSO₄ and dried (Na₂SO₄). After evaporation of the solvent, the residue was purified twice by column chromatography (1:10 EtOH-EtOAc) to afford product 25 (0.300 g, 70%) as a colourless oil; $[\alpha]_D$ +25.7 (c 1.0, CHCl₃); R_f 0.57; ¹H NMR (CDCl₃): δ 6.87 (d, 1H, $J_{2,NH}$ 9.7 Hz, NH), 5.37 (br d, 1H, $J_{3,4}$ 3.1, $J_{4,5}$ $<1.0 \text{ Hz}, \text{ H-4}), 5.35 \text{ (br d, 1H, } J_{3',4'} \text{ 3.2, } J_{4',5'} \text{ 0.9 Hz},$ H-4'), 5.345–5.33 (m, 1H, H-6_{chol}), 5.10 (dd, 1H, $J_{1',2'}$ 7.9, $J_{2',3'}$ 10.4 Hz, H-2'), 4.92 (dd, 1H, H-3'), 4.85 (d, 1H, $J_{1,2}$ 3.5 Hz, H-1), 4.59 (d, 1H, H-1'), 4.57 (ddd, 1H, $J_{2,3}$ 10.6 Hz, H-2), 4.17 (dd, 1H, $J_{5'6'a}$ 6.0, $J_{6'a}$ 6'b 11.0 Hz, H-6'a), 4.16–4.13 (m, 2H, H-6a,6'b), 4.11 (br dd, 1H, J_{5,6a} 6.0, J_{5,6b} 6.5 Hz, H-5), 4.00 (dd, 1H, $J_{6a.6b}$ 9.8 Hz, H-6b), 3.98 (dd, 1H, H-3), 3.87 (br dd, 1H, $J_{5',6'b}$ 6.5 Hz, H-5'), 3.81-3.77 (m, 1H, 1/2 CH_2OC-1), 3.70–3.61 (m, 11H, 1/2 CH_2OC-1 , OCH_2-1 $CH_2(OCH_2CH_2)_2$, 3.21–3.19 (m, 1H, H-3_{chol}), 2.16, 2.13, 2.05, 2.04, 1.99, 1.96, 1.95 (7s, 21H, 6CH₃COO, CH_3CON), 2.42–0.67 (m, 43H, H cholesterol); ¹³C NMR (CDCl₃): δ 170.6, 170.3, 170.2, 170.0, 169.6 (7CH₃CO), 140.6 (C-5_{chol}), 121.9 (C-6_{chol}), 101.5 (C-1'), 98.4 (C-1), 79.6 (C-3_{chol}), 72.9 (C-3), 70.8 (C-3'), 70.6 (C-5'), 70.7, 70.5, 70.4, 70.1, 67.1, 66.8 ((OCH₂CH₂)₃), 69.2 (C-4), 68.7 (C-2'), 67.5 (C-5), 67.1 (C-4'), 62.9 (C-6), 61.0 (C-6'), 56.8 (C-14_{chol}), 56.2 (C-17_{chol}), 50.2 (C-9_{chol}), 48.7 (C-2), 42.4 (C-13_{chol}), 39.8 (C-12_{chol}), 39.5 (C-24_{chol}), 39.0 (C-4_{chol}), 37.2 (C-1_{chol}), 36.9 (C-10_{chol}), 36.2 (C-22_{chol}), 35.8 (C-20_{chol}), 31.9 (C-7_{chol}), 31.8 (C-8_{chol}), 28.4 (C-2_{chol}), 28.2 (C-16_{chol}), 28.0 (C-25_{chol}), 24.3 (C-15_{chol}), 23.8 (C-23_{chol}), 23.2 (CH₃CON), 22.8 (C-27_{chol}), 22.6 (C-26_{chol}), 21.1 (C-11_{chol}), 20.8, 20.7, 20.5 (6CH₃COO), 19.4 (C-19_{chol}), 18.7 (C-21_{chol}), 11.9 (C-18_{chol}). Anal. Calcd for C₅₉H₉₃NO₂₀·1.5H₂O (1163.364): C, 60.91; H, 8.32; N, 1.19. Found: C, 60.77; H, 8.32; N, 1.10.

References

- 1. Varki, A. Glycobiology 1993, 3, 97-130.
- Brocke, C.; Kunz, H. Bioorg. Med. Chem. 2002, 10, 3085–3112.
- Brockhausen, I. Biochem. Biophys. Acta 1999, 1473, 67– 95
- Danishefsky, S. J.; Allen, J. R. Angew. Chem., Int. Ed. 2000, 39, 836–863.
- Dziadek, S.; Espinola, C. G.; Kunz, H. Aust. J. Chem. 2003, 56, 519–543.
- 6. Seitz, O. ChemBioChem 2000, 1, 214-246.
- Lafont, D.; Chierici, S.; Boullanger, P.; Gelhausen, M.; Roux, B. New J. Chem. 1996, 20, 1093–1101.
- 8. Ratcliffe, R. M.; Baker, D. A.; Lemieux, R. U. *Carbohydr. Res.* **1981**, *93*, 35–42.
- 9. Paulsen, H.; Pall, M. Carbohydr. Res. 1984, 135, 71-84.
- Paulsen, H.; Adermann, K. Carbohydr. Res. 1988, 175, 163–172.
- 11. Demchenko, A. V. Curr. Org. Chem. 2003, 7, 35-79.
- 12. Demchenko, A. V. Synlett 2003, 1225-1240.
- Vuljanic, T.; Bergquist, K.-E.; Clausen, H.; Roy, S.; Kihlberg, J. *Tetrahedron* 1996, 52, 7983–8000.
- Paulsen, H.; Adermann, K. Liebigs Ann. Chem. 1989, 751–769.
- Kuduk, S. D.; Scharwz, J. B.; Chen, X.-T.; Glunz, P. W.;
 Sames, D.; Raghupati, G.; Livingston, P. O.; Danishefsky,
 S. J. Am. Chem. Soc. 1998, 120, 12474–12485.
- Liebe, B.; Kunz, H. Angew. Chem., Int. Ed. 1997, 36, 2830–2832.

- 17. Gambert, U.; Thiem, J. Carbohydr. Res. 1997, 299, 85-90
- 18. Rademan, J.; Schmidt, R. R. Carbohydr. Res. 1995, 269, 217–226.
- Chen, X.-T.; Glunz, P. W.; Sames, D.; Danishefsky, S. J. J. Am. Chem. Soc. 1998, 120, 7760–7769.
- Qiu, D.; Koganty, R. R. Tetrahedron Lett. 1997, 38, 961– 964
- 21. Winterfeld, G. A.; Ito, Y.; Ogawa, T.; Schmidt, R. R. Eur. J. Org. Chem. **1999**, 1167–1171.
- 22. Winterfeld, G. A.; Khodair, A. I.; Schmidt, R. R. Eur. J. Org. Chem. 2003, 1009–1021.
- Boullanger, P.; Sancho-Camborieux, M.-R.; Bouchu, M.-N.; Marron-Brignone, L.; Morelis, R. M.; Coulet, P. R. Chem. Phys. Lipids 1997, 90, 63–74.

- 24. David, S.; Hanessian, S. Tetrahedron 1985, 41, 643-663.
- Asakawa, M.; Ashton, P. R.; Balzani, V.; Boyd, S. E.; Credi, A.; Mattersteig, G.; Menzer, S.; Montalti, M.; Raymo, F. M.; Ruffilli, C.; Stoddart, J. F.; Venturi, M.; Williams, D. J. Eur. J. Org. Chem. 1999, 985–994.
- 26. Lapatsanis, L.; Milias, G.; Froussios, K.; Kolovos, M. Synthesis 1983, 1, 671–673.
- Gruendler, G.; Schmidt, R. R. Liebigs Ann. Chem. 1984, 1826–1847.
- 28. Schmidt, R. R.; Toepfer, A. Tetrahedron Lett. 1991, 32, 3353–3356.
- Kunz, H.; Birnbach, S.; Wernig, P. Carbohydr. Res. 1990, 202, 207–223.
- Amvam-Zollo, P.-H.; Sinaÿ, P. Carbohydr. Res. 1986, 150, 199–212.